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Abstract

The onset of thermal convection of a ¯uid con®ned completely in a ®nite vertical cylinder with internal heat
source is examined by using the linear stability analysis. The Galerkin method is applied to solve the perturbation
equations. The stability criteria for various aspect ratios are determined in terms of the Rayleigh number and a

nondimensional parameter relative to the heat source. The e�ects of the aspect ratio and the sidewall thermal
boundary conditions on the stability as well as the structure of the convective roll are investigated. In the limiting
cases, the results compare well with the literature. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The onset of thermal convection in a closed circular
cylinder is now well documented for ¯uids without in-
ternal heat generation [1±5]. On the contrary, the stab-
ility of a ¯uid with internal heat source has only

received attention in the case of horizontal ¯uid layer
[6±11], plane vertical ¯uid layer [12,13], inclined ¯uid
layer [14,15] and in®nite long coaxial cylinder [16,17].

For the geometry of a ®nite vertical cylinder, the inves-
tigations are still restricted to porous medium [18] in
which the velocity ®eld is simpli®ed so as to obey the

Darcy equation. A good summary of convection in
cylindrical geometry without internal heat source and
in ¯uid layer heated internally can be found in [19].
This work was motivated by the examination of the

thermal convection in a cylindrical sole electrode
which contains a conductive ¯uid (steel) submitted to
Joule heating by a current. Neither theoretical nor ex-

perimental study has been found in the open literature

concerning the convective instability of a ¯uid in a

closed vertical cylinder with internal heat source. Pre-

vious attention has been paid by Wu et al. [20] with

the aide of a numerical simulation by imposing a phy-

sically possible gravity perturbation. This is the only

set of results to which our present linear analysis with

internal heat source can be compared. The numerical

simulation with internal heat source presented in [20]

has been validated in a horizontal ¯uid layer and the

results agree with that of the linear analysis of [6].

Although the experiment investigations are not avail-

able, the direct simulation can still be regarded as a

kind of numerical experiment. However, their results

are limited to axisymmetric convection. The goal of

this work was, therefore, to provide a complete linear

stability analysis including the possibility of non-axi-

symmetric ¯ows at the onset of thermal convection in

a closed vertical cylinder with internal heat source.

When a horizontal ¯uid layer is heated from below,

it is well known that the temperature distribution of

the equilibrium state is linear and the threshold of the
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instability can be determined by means of a single non-
dimensional parameter: the Rayleigh number Ra.

Ra � gbl 3dT
na

�1�

where g is the gravitation acceleration, n the kinematic

viscosity, a the thermal di�usivity, b the coe�cient of
thermal expansion, l the characteristic length-generally
equal to the depth of the layer H and dT is the charac-
teristic temperature di�erence. Usually, in the heating-

from-below problem, dT � TL ÿ TH > 0 is the di�er-
ence of the lower surface temperature TL and the
upper surface temperature TH. With the presence of in-

ternal heat source, the temperature distribution of the
quiescent state is nonlinear and this basic state can
break down whether the upper surface temperature is

inferior or superior to the lower one provided that a
su�ciently large negative temperature gradient appears
somewhere within the ¯uid in spite of the simultaneous
existence of the positive temperature gradient. Another

nondimensional parameter which was de®ned orig-
inally by Sparrow et al. [6] in the case of the horizontal
¯uid layer can represent the heat source e�ect:

Sp � SH 2

2kdT
�2�

where k is the thermal conductivity and S the uni-

formly distributed internal heat generation (energy/
volume-time). dT � TL ÿ TH may be positive, negative
or equal to zero. Sp has not had a name so far to the

authors' knowledge. In homage to his pioneer contri-
bution in the ®eld of hydrodynamic instability with in-

ternal heat source, from now on, we will call it
Sparrow number. A parameter �gbSH 5�=�2kna� called
internal Rayleigh number RaI by some researchers is

the product of Sparrow number and Rayleigh number.

2. Mathematical formulation

The system to be studied consists of an initially
motionless Boussinesq ¯uid which ®lls a rigid vertical
circular cylinder of height H, radius R with uniform

internal heat source S as shown in Fig. 1. The perfectly
conducting lower and upper surfaces are maintained at
constant temperatures TL and TH � TL ÿ dT, respect-
ively. The lateral boundary is assumed to be adiabatic
or the conducting sidewall is kept at the temperature
of the equilibrium state of the ¯uid.

The initial velocity, temperature, pressure and den-
sity are those under steady state conditions:

V0 � 0 �3�

T0 � S

2k

�
H 2

4
ÿ z 2

�
�
�
TH � TL

2
ÿ dT

H
z

�
�4�

rP0 � ÿrmg
�
1ÿ b

�
lz� S

2k

�
z 2 � H 2

12

���
ez �5�

r0 � rm

�
1ÿ b

�
lz� S

2k

�
z 2 � H 2

12

���
�6�

where l � ÿSz=kÿ dT=H is the initial temperature

gradient, rm the initial mean density, and ez the unit
vector along the z axis. The nonlinear temperature dis-
tribution in the ¯uid depends only on z. The quiescent

state temperature distribution is linear when S � 0 cor-
responding to the problem of a ¯uid heated from
below.

If the marginal state is assumed to be time indepen-
dent, the linearized nondimensional perturbation
equations in which V, P and T are the disturbances of

the velocity, pressure and temperature are:

r � V � 0 �7�

r 2V � RaTez ÿ rP � 0 Ra � gbH 3dT=na �8�

r 2T� V � ez�2Spz� 1� � 0 Sp � SH 2=2kdT �9�
where r 2 is the Laplace operator, Ra the Rayleigh
number and Sp the Sparrow number. The perturbed
velocity V, temperature T and pressure P are measuredFig. 1. Diagram of physical system.
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in units of a=H, dT and r0an=H 2, respectively. Ther-
mal di�usivity a and kinematic viscosity n were

assumed constants in the above derivation. The radial
and vertical coordinates r and z are scaled by R and
H. This scaling introduces the aspect ratio A = R/H

into the di�erential operators. The boundary con-
ditions are:

V � 0 on all surfaces �10�

T � 0 on z �21=2 �11�

@T

@r
� 0 on r � 1 �insulating sidewalls� �12�

or

T � 0 on r � 1 �conducting sidewalls� �13�

3. Solution of stability equations

Eqs. (7)±(9) and the boundary conditions (10)±(13)
constitute an eigenvalue problem for the Rayleigh

number Ra. For a given value of Sparrow number Sp
and aspect ratio A, there is a maximum eigenvalue cor-
responding to the critical Rayleigh number Rac, mark-

ing the onset of instability.

3.1. Symmetric mode

The Galerkin's method is used to generate an ap-
proximate solution. For each variable, the approximat-
ing series are expressed as:

T �
X
i

X
l

BilTil �14�

V �
X
i

X
l

EilVil �15�

where Bil and Eil are constants. Til and Vil are the tem-
perature and velocity trial functions which satisfy the

boundary conditions. The temperature trial function is
chosen as follows:

Til �
ÿ
z 2 ÿ 1=4

�
zlÿ1J0

ÿ
bir
� �16�

where J0 is the Bessel function of the ®rst kind of
order zero, bi the ith root of J1�bi � � 0 for the insulat-
ing sidewalls or the ith root of J0�bi � � 0 for the con-

ducting sidewalls. The velocity trial function is derived
from a stream function cil:

Vil � r �
ÿ
ciley

� �17�

The boundary conditions on the stream functions cil

are:

cil �
@cil

@ r
� 0 on r � 1 �18�

cil �
@cil

@z
� 0 on z �21=2 �19�

cil � 0 at r � 0 �20�

Eq. (20) is obtained on demanding the solution to be
®nite everywhere. The stream functions cil are there-

fore chosen as:

cil �
ÿ
z 2 ÿ 1=4

� 2
zlÿ1

 
J1�Zir�
J1�Zi �

ÿ I1�Zir�
I1�Zi �

!
�21�

J1, I1 are the Bessel function and modi®ed Bessel func-

tion of the ®rst kind of order one. Zi is the ith root of

J1�Zi �I2�Zi � � I1�Zi �J2�Zi � � 0 �22�

in order to satisfy the condition of a rigid lateral wall.
Note that pressure will vanish from the Galerkin for-

mulation due to the solenoidal form of the velocity
®elds. Therefore, its representation is not speci®ed.The
Galerkin technique requires the residual to be orthog-

onal to each appropriate trial function. We substitute
Eqs. (14) and (15) into Eqs. (8) and (9). Then we mul-
tiply the resulting momentum equation by Vjm, and
energy equation by Tjm and perform the volume inte-

gration. This procedure yields a set of algebraic
equations. In matrix form:�

M11 M12

Ra M21 M22

��
B
E

�
� 0 �23�

The de®nitions of the matrices are:

M11 �
�
O
Tjmr 2Til dO

M12 �
�
O
TjmVil � ez�2Spz� 1� dO

M21 �
�
O

Vjm � ezTil dO

M22 �
�
O

Vjm � r 2Vil dO

�24�

where O is the axisymmetric domain: ÿ1=2RzR1=2,
0RrR1: Without heat source, M12 is the transpose of
M21: The corresponding eigenvalue formulation is
obtained by eliminating B
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ÿ
Mÿ1

22 M21Mÿ1
11 M12 ÿ I=Ra

�
E � 0 �25�

The largest eigenvalue is therefore the critical Rayleigh
number Rac for a given Sparrow number and an

aspect ratio. After the associated eigenvector E has
been found, the vector B may be recovered from:

B � ÿMÿ1
11 M12E �26�

3.2. Asymmetric mode

The approximating series for temperature is:

T �
X
i

X
l

DilTil �27�

where Dil are expansion coe�cients and the tempera-
ture trial function Til is chosen as:

Til � cos�ny�
�
z 2 ÿ 1

4

�
zlÿ1Jn

ÿ
bnir

� �28�

where n is the azimuthal mode number, Jn is the Bessel

function of the ®rst kind of order n, bni is the ith root
of the following characteristic equations:

nJn
ÿ
bni
�ÿ bniJn�1

ÿ
bni
� � 0 �insulating sidewalls� �29�

Jn
ÿ
bni
� � 0 �conducting sidewalls� �30�

The velocity obtained by the superposition of two two-
dimensional approximated velocity ®eld is expressed

by:

V � V�a� � V�b� �31�
where

V�a� �
X
i

X
l

FilV
�a�
il �32�

V�b� �
X
i

X
l

GilV
�b�
il �33�

Fil and Gil are constants; V�a�il and V�b�il are derived
from stream functions fil and cil so that continuity is

automatically satis®ed.

V�a�il � r �
ÿ
filer

� �34�

V�b�il � r � �jilez � �35�

The boundary condition on the stream functions are
given by:

jil � fil �
@jil

@ r
� 0 on r � 1 �36�

jil � fil �
@fil

@z
� 0 on z �2

1

2
�37�

The ®niteness of solutions everywhere requires:

jil � fil � 0 at r � 0 �38�
Trial functions that satisfy the above conditions are
chosen as follows:

fil � sin�ny�
ÿ
z 2 ÿ 1=4

� 2
zlÿ1Jn�1�sir� �39�

jil � sin�ny�
hÿ
z 2 ÿ 1=4

� 2ÿÿz 2 ÿ 1=4
�i

� zlÿ1
�
Jn�xir�
Jn�xi �

ÿ In�xir�
In�xi �

� �40�

where In is the modi®ed Bessel function of the ®rst
kind of order n. si and xi are respectively the roots of
the following two characteristic equations:

Jn�1�si � � 0 �41�

Jn�xi �In�1�xi � � In�xi �Jn�1�xi � � 0 �42�
The Galerkin method applied to Eqs. (8) and (9) gen-
erates a system of algebraic equation by requiring the
residual to be orthogonal to each of the appropriate

trial functions:24 M11 M12 0
Ra M21 M22 M23

0 M32 M33

3524D
F
G

35 � 0 �43�

where

M11 �
�
O
Tjmr 2Til dO

M12 �
�
O
TjmV�a�il � ez�2Spz� 1� dO

M21 �
�
O

V
�a�
jm � ezTil dO M22 �

�
O

V
�a�
jm � r 2V

�a�
il dO

M23 �
�
O

V
�a�
jm � r 2V

�b�
il dO M32 �

�
O

V�b�jm � r 2V
�a�
il dO

M33 �
�
O

V�b�jm � r 2V
�b�
il dO �44�

and O is the asymmetric domain: ÿ1=2RzR1=2,
0RrR1, 0RyR2p: Without heat source, the problem
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is reduced to the conventional auto-adjoint problem of
heating from below. Eliminating D and G yields the

corresponding eigenvalue formulation:hÿ
M22 ÿM23Mÿ1

33 M32

�ÿ1
M21Mÿ1

11 M12 ÿ I=Ra
i
F

� 0 �45�

For a given Sparrow number and an aspect ratio, the

critical Rayleigh number is the largest eigenvalue.
After the associated eigenvector F has been found, the
vector D and G may be recovered from

D � ÿMÿ1
11 M12F �46�

G � ÿMÿ1
33 M32F �47�

4. Results and discussion

4.1. Comparison with the existing results in the limit
cases of Sp = 0 and Sp = 1

In order to validate the numerical procedure, the
calculation was performed ®rst in the case of sym-

metric mode for Sp � 0 and Sp � 1 that correspond
respectively to the classical problem of a ¯uid heated
from below �Sp � 0� and the problem of the zero Ray-

leigh number convection �jSpj � 1, dT � 0). When
jSpj � 1, i.e., dT � 0, the Rayleigh number is not a
signi®cant parameter of transition. We apply a modi-

®ed Rayleigh number de®ned by

Ram � gb�Tmax ÿ TH ��H=2ÿ zmax �3=�na� �48�
or

Ram � gbSH 5

64kna
for jSpj41 �dT40� �49�

where zmax is the vertical coordinate of the maximum
temperature Tmax: The critical modi®ed Rayleigh num-
ber Ramc is obtained directly from the computed criti-
cal Rayleigh number Rac by a simple algebraic

relation:

Ramc � 1

32

�
1� 1

Sp

�3�
Sp� 1

Sp
� 2

�
Rac

Sp 6�0 �50�

or

Ramc � Sp

32
Rac � 1

32
RacI for jSpj41

�dT40�
�51�
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SpRac � RacI is the critical internal Rayleigh number.
The comparison with the literature is presented in

Tables 1 and 2.
The slightly higher values of Rac obtained by Yama-

guchi et al. [4] presented in Table 1 may be due to the
relatively coarse discretizations. Increasing the number

of elements in the mesh can lead to more accurate
results. The lower values of Ramc obtained by Wu et
al. [20] presented in Table 2 may result from the low

Prandtl number (Pr = 0.1) of the ¯uid under simu-
lation.
For asymmetric mode without internal heat source,

the Rac predicted is in agreement with that in [3,5,21]
but does not agree with [2]. Buell and Catton [3] have
explained that the azimuthal velocity is not well rep-

resented in [2]. The structure of the ¯ow ®eld at the
onset of convection without internal heat source found
in our linear analysis is in accordance with [1,4], for
the axisymmetric mode and [5] for the asymmetric

mode. With internal heat source, the axisymmetric
mode compares well with [20].
The critical Rayleigh numbers are accurate to fourth

signi®cant ®gure for the symmetric mode by using the
49th order expansions (seven radial and seven vertical
functions) based on the increment of total number of

terms by 68. For the asymmetric mode, 72 terms were
needed and nine radial with eight vertical terms gave
the best results.

4.2. Critical Rayleigh numbers for jSpj � 100

In order to illustrate the case with internal heat
source of ®nite intensity, we chose the case Sp = 100
and Sp = ÿ100 corresponding to the positive and

negative temperature di�erence between the two hori-
zontal surfaces con®ning the domain. The critical Ray-
leigh numbers for some selected aspect ratios with

jSpj � 100 are listed in Table 3. It is well known that
for small aspect ratios, the critical mode is asymmetric
in the heated-from-below case. Our results show that it

remains true when there is an internal heat source with
jSpj � 100: The asymmetric mode n = 1 predominate
when the aspect ratios A is inferior to about 0.75. For

a large aspect ratio the di�erence of Rac between sym-
metric and asymmetric mode is reduced. The variation

of Rac with aspect ratio A (between 1 and 4) for sym-
metric mode (n = 0) with jSpj � 100 is presented in
Fig. 2.

4.3. Velocity ®elds at the onset of convection

The system of perturbation equations and boundary

conditions is invariant under the transformation �Sp,
z�4 �ÿSp, ÿz�: The degree of this symmetry is strong
when jSpj is large and the symmetry is exact for

jSpj41 regardless of the aspect ratio. When Sp = 0
the system is symmetric with respect to z � 0 itself.

Table 2

Comparison of the critical modi®ed Rayleigh numbers Ramc, calculated by the linear analysis with values obtained by the numerical

simulation

Aspect ratio A Ref. [20]: numerical simulation This work: linear analysis

SP = 1 (Pr = 0.1) Sp = 1� 106 Sp = ÿ1� 106

0.5 1510.09 1545.70 1545.70

0.75 768.87 794.17 794.17

1.5 604.14 642.13 642.13

2.0 584.38 608.40 608.40

Fig. 2. The critical Rayleigh numbers for symmetric mode,

jSpj � 100, 1RAR 4.
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The variations of the ¯ow patterns depending not only

on the aspect ratio but also on the Sparrow number is

rather complex. We present here only some representa-

tive cases. The sidewalls are all adiabatic for all the

¯ow ®elds presented below.

For a given aspect ratio Ar1, the number of axi-

symmetric rolls increases as Sp increases. An example

of A � 3:6 is illustrated in Fig. 3 showing the charac-

teristics of the increase of the wave number with

increasing Sp. This is in agreement with the results of

an in®nite horizontal ¯uid layer [6] in which the wave

length is 1.28 times larger for Sp = 0 than that for

Sp � 1:
For jSpj � 100, a new circular roll occurs at the

upper corner for dT > 0 or the lower corner for dT <
0 when the aspect ratio exceeds a value near the max-

ima of the insulating neutral curves in Fig. 2. The
boundary of the new circular roll extends as the aspect
ratio increases further. The roll having less velocity

intensity can grow to a size roughly equal to its paral-
lel counter-rotating roll when the aspect ratio nears a
value corresponding to the minima of the neutral

curves in Fig. 2. An example of the transition sequence
from one to two rolls is shown in Fig. 4.

5. Conclusion

This study gives a linear stability analysis of a ¯uid

in a bounded vertical cylinder with internal heat gener-
ation.
In each section, we have given partial conclusions

Table 3

Critical Rayleigh number for some aspect ratios and for di�erent modes, at Sp = 0, 100, ÿ100

Sp A Mode n Insulating sidewalls Conducting sidewalls

0 4.0 0 1748.70 1749.53

1 1733.95

2 1747.92

3 1741.66

100 4.0 0 179.29 179.38

1 178.75

2 179.17

3 178.96

1.5 0 195.68 196.28

1 186.88 191.88

2 193.86 196.58

3 205.64 206.22

0.5 0 480.77 531.01

1 281.25 440.39

2 441.97

3 771.16

0.25 0 3161.13 3384.86

1 830.49 1879.82

2 2480.52 4527.92

3 5672.62

ÿ100 4.0 0 ÿ199.21 ÿ199.46
1 ÿ198.95
2 ÿ199.05
3 ÿ199.27

1.5 0 ÿ215.78 ÿ217.20
1 ÿ208.23 ÿ213.08
2 ÿ213.46 ÿ216.96
3 ÿ226.58 ÿ226.56

0.5 0 ÿ509.11 ÿ562.73
1 ÿ308.33 ÿ473.45
2 ÿ471.17
3 ÿ812.44

0.25 0 ÿ3282.02 ÿ3517.33
1 ÿ875.83 ÿ1969.51
2 ÿ2583.08 ÿ4702.50
3 ÿ5878.00
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Fig. 3. The evolution of the velocity vectors as a function of Sp for a given aspect ratio A = 3.6, symmetric mode.
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and results on the stability conditions for the sym-
metric and asymmetric modes depending on the aspect

ratio and the internal heat generation.
In the limiting classical case without internal source,

our results are compared with those in the literature,

for all aspect ratios and di�erent modes. For the sym-
metric mode with internal source, the comparison is
done with a direct simulation we did in a previous

paper. All these results are in good agreement.
The main points of the conclusion concerning the

present study are that: the symmetry relative to the

medium horizontal plane is broken, the Rayleigh num-
ber is not the only relevant parameter and, as in the
classical case without source, the ®rst asymmetric
mode is the most unstable for small aspect ratios.

In the case without internal source, the heat can be
transferred from the top to the bottom or vice versa
depending on dT: In the case with internal heat source,

the energy coming from the interior is transferred to
the top and to the bottom. The conductive tempera-

ture distribution can have a region where the gradient
is directed toward the bottom. So, the equilibrium

becomes potentially unstable. If the top is hotter than
the bottom and as the unstable domain is near the top,
the e�ects of convection are to evacuate more energy

toward the top (it is possible to obtain 70% of heat
[20]). From the point of view of the dimensional analy-
sis the two parameters that intervene when the two

types of heat transfer are competitive, are the Rayleigh
number Ra and the dimensionless number Sp which
we call the Sparrow number.

The con®nement has a stabilizing e�ect, but it is the
asymmetric mode n � 1 that becomes more unstable
than the axisymmetric mode for small aspect ratios. If
the lateral wall is conductive, the stabilizing e�ect of

the sidewall is weaker since the heat can be transferred
laterally. On the contrary, in the adiabatic case, the
heat cannot be evacuated toward the sidewalls. This

creates a more favorable condition for the instability.
In these two cases, the e�ect of the con®nement is of
little importance for the aspect ratio A superior to or

of the order of 4.

References

[1] G.S. Charlson, R.L. Sani, Thermoconvective instability

in a bounded cylindrical ¯uid layer, Int. J. Heat Mass

Transfer 13 (1970) 1479±1496.

[2] G.S. Charlson, R.L. Sani, On thermoconvective instabil-

ity in a bounded cylindrical ¯uid layer, Int. J. Heat

Mass Transfer 14 (1971) 2157±2160.

[3] J.C. Buell, I. Catton, The e�ect of wall conduction on

the stability of a ¯uid in a right circular cylinder heated

from below, Trans. ASME J. Heat Transfer 105 (1983)

255±260.

[4] Y. Yamaguchi, C.J. Chang, R.A. Brown, Multiple

buoyancy-driven ¯ows in a vertical cylinder heated from

below, Phil. Trans. R. Soc. Lond. 312 (1984) 519±552.

[5] G.R. Hardin, R.L. Sani, D. Henry, B. Roux, Buoyancy-

driven instability in a vertical cylinder: binary ¯uids

with Soret e�ect. Part 1: general theory and stationary

stability results, International Journal for Numerical

Methods in Fluids 10 (1990) 79±117.

[6] E.M. Sparrow, R.J. Goldstein, V.K. Jonsson, Thermal

instability in a horizontal ¯uid layer: e�ect of boundary

conditions and nonlinear temperature pro®le, J. Fluid

Mech. 18 (1964) 513±528.

[7] P.H. Robert, Convection in horizontal layers with in-

ternal heat generation Ð theory, J. Fluid Mech. 30

(1967) 33±49.

[8] D.J. Tritton, M.N. Zarraga, Convection in horizontal

layers with internal heat generation. Experiments, J.

Fluid Mech. 30 (1967) 21±37.

[9] P.M. Waston, Classical cellular convection with a

spatial heat source, J. Fluid Mech. 32 (1968) 399±411.

[10] F.A. Kulacki, R.J. Goldstein, Thermal convection in a

horizontal ¯uid layer with uniform volumetric energy

sources, J. Fluid Mech. 55 (1972) 271±287.

Fig. 4. Transition sequence from one to two rolls, insulating

sidewall, jSpj � 100:

K.F. Wu, J.P. Brancher / Int. J. Heat Mass Transfer 43 (2000) 3775±3784 3783



[11] N. Rudraiah, G.N. Sekhar, Convection in magnetic

¯uids with internal heat generation, Trans. ASME J.

Heat Transfer 113 (1991) 122±127.

[12] G.Z. Gershuni, E.M. Zhukhovitskii, A.A. Iakimov, On

the stability of steady convective motion generated by

internal heat source, Sov. J. Appl. Math. Mech. 34

(1970) 669±674 (English translation).

[13] G.Z. Gershuni, E.M. Zhukhovitskii, A.A. Iakimov,

Two kinds of instability of stationary convective

motion induced by internal heat sources, Sov. J.

Appl. Math. Mech. 37 (1973) 544±548 (English trans-

lation).

[14] M. Takashima, The stability of natural convection in an

inclined ¯uid layer with internal heat generation, J.

Phys., Soc. Jpn 58 (1989) 4431±4440.

[15] M. Takashima, The stability of natural convection in an

inclined ¯uid layer with internal heat generation II, J.

Phys., Soc. Jpn 60 (1991) 445±465.

[16] A.A. Kolyshkin, R. Vaillancourt, Stability of internally

generated thermal convection in a tall vertical annulus,

Can. J. Phys 69 (1991) 743±748.

[17] A.A. Kolyshkin, R. Vaillancourt, On the stability of

nonisothermal circular Couette ¯ow, Phys. Fluids 5

(1993) 3136±3146.

[18] W.E. Stewart Jr, C.L.G. Dona, Free convection in a

heat-generating porous medium in a ®nite vertical cylin-

der, Trans. ASME J. Heat Transfer 110 (1988) 517±520.

[19] G.Z. Gershuni, E.M. Zhukhovitskii, Convective stability

of incompressible ¯uids (translated from Russian), in:

Israel Program for Speci®c Translation, Keter

Publishing House, Jerusalem, 1976.

[20] K.F. Wu, E. Combeau, J.P. Brancher, InstabiliteÂ

thermo-convective dans un cylindre avec source volu-

mique de chaleur, Int J. Heat Mass Transfer 40 (1997)

1535±1543.

[21] M.N. Sarby, An integral method for studying the onset

of natural convection, Eur. J. Mech., B/Fluids 12 (1993)

337±365.

K.F. Wu, J.P. Brancher / Int. J. Heat Mass Transfer 43 (2000) 3775±37843784


