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Abstract

The onset of thermal convection of a fluid confined completely in a finite vertical cylinder with internal heat
source is examined by using the linear stability analysis. The Galerkin method is applied to solve the perturbation
equations. The stability criteria for various aspect ratios are determined in terms of the Rayleigh number and a
nondimensional parameter relative to the heat source. The effects of the aspect ratio and the sidewall thermal
boundary conditions on the stability as well as the structure of the convective roll are investigated. In the limiting
cases, the results compare well with the literature. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The onset of thermal convection in a closed circular
cylinder is now well documented for fluids without in-
ternal heat generation [1-5]. On the contrary, the stab-
ility of a fluid with internal heat source has only
received attention in the case of horizontal fluid layer
[6-11], plane vertical fluid layer [12,13], inclined fluid
layer [14,15] and infinite long coaxial cylinder [16,17].
For the geometry of a finite vertical cylinder, the inves-
tigations are still restricted to porous medium [18] in
which the velocity field is simplified so as to obey the
Darcy equation. A good summary of convection in
cylindrical geometry without internal heat source and
in fluid layer heated internally can be found in [19].

This work was motivated by the examination of the
thermal convection in a cylindrical sole electrode
which contains a conductive fluid (steel) submitted to
Joule heating by a current. Neither theoretical nor ex-
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perimental study has been found in the open literature
concerning the convective instability of a fluid in a
closed vertical cylinder with internal heat source. Pre-
vious attention has been paid by Wu et al. [20] with
the aide of a numerical simulation by imposing a phy-
sically possible gravity perturbation. This is the only
set of results to which our present linear analysis with
internal heat source can be compared. The numerical
simulation with internal heat source presented in [20]
has been validated in a horizontal fluid layer and the
results agree with that of the linear analysis of [6].
Although the experiment investigations are not avail-
able, the direct simulation can still be regarded as a
kind of numerical experiment. However, their results
are limited to axisymmetric convection. The goal of
this work was, therefore, to provide a complete linear
stability analysis including the possibility of non-axi-
symmetric flows at the onset of thermal convection in
a closed vertical cylinder with internal heat source.
When a horizontal fluid layer is heated from below,
it is well known that the temperature distribution of
the equilibrium state is linear and the threshold of the
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instability can be determined by means of a single non-
dimensional parameter: the Rayleigh number Ra.

_ gplPeT
T v

Ra )]
where g is the gravitation acceleration, v the kinematic
viscosity, « the thermal diffusivity, f the coefficient of
thermal expansion, / the characteristic length-generally
equal to the depth of the layer H and J7 is the charac-
teristic temperature difference. Usually, in the heating-
from-below problem, 07 = Ty — Ty > 0 is the differ-
ence of the lower surface temperature 77 and the
upper surface temperature Ty. With the presence of in-
ternal heat source, the temperature distribution of the
quiescent state is nonlinear and this basic state can
break down whether the upper surface temperature is
inferior or superior to the lower one provided that a
sufficiently large negative temperature gradient appears
somewhere within the fluid in spite of the simultaneous
existence of the positive temperature gradient. Another
nondimensional parameter which was defined orig-
inally by Sparrow et al. [6] in the case of the horizontal
fluid layer can represent the heat source effect:

SH?

5P = St

@

where k is the thermal conductivity and S the uni-
formly distributed internal heat generation (energy/
volume-time). 67 = Ty — Ty may be positive, negative
or equal to zero. Sp has not had a name so far to the

ZA
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Fig. 1. Diagram of physical system.

authors’ knowledge. In homage to his pioneer contri-
bution in the field of hydrodynamic instability with in-
ternal heat source, from now on, we will call it
Sparrow number. A parameter (g8SH >)/(2kva) called
internal Rayleigh number Ra; by some researchers is
the product of Sparrow number and Rayleigh number.

2. Mathematical formulation

The system to be studied consists of an initially
motionless Boussinesq fluid which fills a rigid vertical
circular cylinder of height H, radius R with uniform
internal heat source S as shown in Fig. 1. The perfectly
conducting lower and upper surfaces are maintained at
constant temperatures 7y and Ty = Ty — 07, respect-
ively. The lateral boundary is assumed to be adiabatic
or the conducting sidewall is kept at the temperature
of the equilibrium state of the fluid.

The initial velocity, temperature, pressure and den-
sity are those under steady state conditions:

Vo=0 (3)
_S(H? 2) (THJFTL 5T)
TO_%(T_Z + T—ﬁz (4)

2
VP, = —pmg[l - ﬂ</12+ %(22 + %))]e )

2
pozpm[l—ﬁ(zz+%(z2+’f—2))] ©)

where A= —Sz/k—0T/H is the initial temperature
gradient, p,, the initial mean density, and e, the unit
vector along the z axis. The nonlinear temperature dis-
tribution in the fluid depends only on z. The quiescent
state temperature distribution is linear when S = 0 cor-
responding to the problem of a fluid heated from
below.

If the marginal state is assumed to be time indepen-
dent, the linearized nondimensional perturbation
equations in which ¥, P and T are the disturbances of
the velocity, pressure and temperature are:

V.V=0 @)

V2V 4+ RaTe, —VP =0  Ra=gBH3*dT/va ®)

VIT+V.e,2Spz+1)=0  Sp=SH?)2k6T  (9)

where V2 is the Laplace operator, Ra the Rayleigh
number and Sp the Sparrow number. The perturbed
velocity V, temperature T and pressure P are measured
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in units of «/H, 6T and pyav/H 2, respectively. Ther-
mal diffusivity o« and kinematic viscosity v were
assumed constants in the above derivation. The radial
and vertical coordinates 7 and Z are scaled by R and
H. This scaling introduces the aspect ratio 4 = R/H
into the differential operators. The boundary con-
ditions are:

V=0 on allsurfaces (10)
T=0 on z=+1/2 (11)
aT _ . L

5 = 0 on 7=1 (insulating sidewalls) (12)
or

T=0 on 7=1 (conducting sidewalls) (13)

3. Solution of stability equations

Egs. (7)—(9) and the boundary conditions (10)—(13)
constitute an eigenvalue problem for the Rayleigh
number Ra. For a given value of Sparrow number Sp
and aspect ratio A, there is a maximum eigenvalue cor-
responding to the critical Rayleigh number Ra., mark-
ing the onset of instability.

3.1. Symmetric mode

The Galerkin’s method is used to generate an ap-
proximate solution. For each variable, the approximat-
ing series are expressed as:

T= Z ZB,-,T,-; (14)
i [

V=722 EiVi (15)
il

where By and Ej are constants. T; and V;; are the tem-
perature and velocity trial functions which satisfy the
boundary conditions. The temperature trial function is
chosen as follows:

Ty = (22 = 1/4)27' 4y (B;7) (16)

where J, is the Bessel function of the first kind of
order zero, f3; the ith root of J;(f;) = 0 for the insulat-
ing sidewalls or the ith root of Jy(f;) =0 for the con-
ducting sidewalls. The velocity trial function is derived
from a stream function V;;:

Va=V x (e0) 17)

The boundary conditions on the stream functions
are:

v,

a=Y1 0 on 71 (18)
or

Yy = 8'/’_” =0 on z=+1/2 19)
0z

Yy=0 at 7=0 (20)

Eq. (20) is obtained on demanding the solution to be
finite everywhere. The stream functions ; are there-
fore chosen as:

—(z2_ 25171 Jl(nif)_ll(nif)
va=(2-1/4) (—Jl(m) T (m)> @1

Ji, I are the Bessel function and modified Bessel func-
tion of the first kind of order one. #; is the ith root of

Jimhmy) + Lhin)J2(m;) =0 (22)

in order to satisfy the condition of a rigid lateral wall.
Note that pressure will vanish from the Galerkin for-
mulation due to the solenoidal form of the velocity
fields. Therefore, its representation is not specified.The
Galerkin technique requires the residual to be orthog-
onal to each appropriate trial function. We substitute
Eqgs. (14) and (15) into Egs. (8) and (9). Then we mul-
tiply the resulting momentum equation by Vj,, and
energy equation by 7}, and perform the volume inte-
gration. This procedure yields a set of algebraic
equations. In matrix form:

My, My ||B| _
|:R(1 M21 Mgz][E]_o (23)
The definitions of the matrices are:

My = | T;,V>T;dQ
Q

My =| TpVi-e(2Spz +1)dQ
Q

M21 = ij'ezTi/dQ
Q

24)

My = | Vin-V?VydQ
Q

where Q is the axisymmetric domain: —1/2<z<1/2,
0<7<1. Without heat source, M, is the transpose of
M>,. The corresponding eigenvalue formulation is
obtained by eliminating B
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(My'MyM['M, — I/Ra)E = 0 (25)

The largest eigenvalue is therefore the critical Rayleigh
number Ra. for a given Sparrow number and an
aspect ratio. After the associated eigenvector E has
been found, the vector B may be recovered from:

B=-M;'M,E (26)

3.2. Asymmetric mode

The approximating series for temperature is:
T=Y "% DTy 27)
i1

where D;; are expansion coefficients and the tempera-
ture trial function 77 is chosen as:

Ty = cos(nB)<Z2 - i)‘l’ (BT (28)

where n is the azimuthal mode number, J,, is the Bessel
function of the first kind of order n, f3,; is the ith root
of the following characteristic equations:

1y (i) = Buidus1 (Bi) =0 (insulating sidewalls) ~ (29)

Jn (ﬁm-) =0 (conducting sidewalls) (30)

The velocity obtained by the superposition of two two-
dimensional approximated velocity field is expressed
by:

V=v@® 4y® (31

where

VO =3"3N"Fvy) (32)
i /

v = ZZG,/fo’) (33)

F; and G; are constants; VEZ“) and Vf.lb) are derived
from stream functions ¢, and y; so that continuity is
automatically satisfied.

Vi =V x (duer) (34)

Vg’) =V X (¢;€) (35)

The boundary condition on the stream functions are
given by:

=0 on 7= (36)

(37

The finiteness of solutions everywhere requires:
Py=¢y=0 atF=0 (38)

Trial functions that satisfy the above conditions are
chosen as follows:

¢y = sin(n0)(z* — 1/4) 277,11 (a7) (39)
0q = sin(ne)[(z2 —1/4)° (2 - 1/4)]
% 7171 (Jn(ét?) _ In(éi))
&) (&)

where [, is the modified Bessel function of the first
kind of order n. g; and ¢&; are respectively the roots of
the following two characteristic equations:

Jn+1(ai) =0 (41)

(40)

Jn(él’)lrwl(éi) + ]n(éi)JnJrl(éi) =0 (42)

The Galerkin method applied to Egs. (8) and (9) gen-
erates a system of algebraic equation by requiring the
residual to be orthogonal to each of the appropriate
trial functions:

M, M;; O D
Ra M2| M22 M23 F =0 (43)
0 My, Miy; || G

where

My =J T, VT, 40
Q

M, = [ T/m ez(zSpZ + 1) Qe

My = JV(“ e, Ty dQ M22_J 4 v AR Te)
Q

jm jm
My = J V(a) VZV(b) do My = J ngq) . VZVfYa) do
Q Q

Mas = J VO 2y 4o (44)

jm

and Q is the asymmetric domain: —1/2<zZ<1/2,
0<7<1, 0<0<2n. Without heat source, the problem
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is reduced to the conventional auto-adjoint problem of
heating from below. Eliminating D and G yields the
corresponding eigenvalue formulation:

_ -1 —
[(Mzz —M»M'My) MoyM{'M, — I/Ra]F
=0 (45)

For a given Sparrow number and an aspect ratio, the
critical Rayleigh number is the largest eigenvalue.
After the associated eigenvector F has been found, the
vector D and G may be recovered from

D =—-M'M,F (46)

G = -M'MyF 47)

4. Results and discussion

4.1. Comparison with the existing results in the limit
cases of Sp = 0 and Sp = oo

In order to validate the numerical procedure, the
calculation was performed first in the case of sym-
metric mode for Sp =0 and Sp = oo that correspond
respectively to the classical problem of a fluid heated
from below (Sp = 0) and the problem of the zero Ray-
leigh number convection (|Sp| = 00,7 =0). When
|Sp| = o0, i.e., 6T =0, the Rayleigh number is not a
significant parameter of transition. We apply a modi-
fied Rayleigh number defined by

Ray = gP(Tmax — Ti)(H/2 — Zpan )’ /(v22) (48)
or

, gpSH 5
Ray, = T for |Sp|—o00 (6T—0) (49)

where zna 1S the vertical coordinate of the maximum
temperature Ty.x. The critical modified Rayleigh num-
ber Rap, is obtained directly from the computed criti-
cal Rayleigh number Ra. by a simple algebraic
relation:

1 1\° 1
Rape = —(1+—) (Sp+ — +2)Ra.
¢ 32( +SP> <p+Sp+ ) ¢

Sp#0 (50)

S, 1
Ray, = —pRaC = —Ra, for |Sp|— o0
32 32 (51)

(6T—0)

Table 1

Comparison of the critical Rayleigh numbers Ra., with values reported by Charlson and Sani [1] and Yamaguchi et al. [4]. All the results presented are based on the linear analy-

sis of the stability

Ref. [4]: finite element method

(finite element mesh)

Ref. [1]: Rayleigh—Ritz method

This work: Galerkin method

Aspect ratio 4

Sidewall

(no. of radial functions x no. of vertical functions)

(no. of radial functions x no. of vertical functions)

10892 (4 x 8)
1871 (8 x 4)

10887.15 (10 x 3)
1862.27 (10 x 3)

10873.15 (7 x 7)
1862.17 (7 x 7)

0.5

Insulating wall

2.0
6.0

0.5

1725.98 (10 x 3)

1725.91 (10 x 10)
11715.20 (7 x 7)
1886.13 (7 x 7)

11725.08 (10 x 3)
1886.24 (10 x 3)

Conducting wall

2.0
6.0

1726.25 (10 x 3)

11725.08 (10 x 10)

3779
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Table 2

Comparison of the critical modified Rayleigh numbers Rap., calculated by the linear analysis with values obtained by the numerical

simulation

Aspect ratio 4

Ref. [20]: numerical simulation

This work: linear analysis

SP = oo (Pr = 0.1) Sp = 1x10° Sp = —1x10°
0.5 1510.09 1545.70 1545.70
0.75 768.87 794.17 794.17
1.5 604.14 642.13 642.13
2.0 584.38 608.40 608.40

SpRa. = Rag is the critical internal Rayleigh number.
The comparison with the literature is presented in
Tables 1 and 2.

The slightly higher values of Ra. obtained by Yama-
guchi et al. [4] presented in Table 1 may be due to the
relatively coarse discretizations. Increasing the number
of elements in the mesh can lead to more accurate
results. The lower values of Ra,. obtained by Wu et
al. [20] presented in Table 2 may result from the low
Prandtl number (Pr = 0.1) of the fluid under simu-
lation.

For asymmetric mode without internal heat source,
the Ra. predicted is in agreement with that in [3,5,21]
but does not agree with [2]. Buell and Catton [3] have
explained that the azimuthal velocity is not well rep-
resented in [2]. The structure of the flow field at the
onset of convection without internal heat source found
in our linear analysis is in accordance with [1,4], for
the axisymmetric mode and [5] for the asymmetric
mode. With internal heat source, the axisymmetric
mode compares well with [20].

The critical Rayleigh numbers are accurate to fourth
significant figure for the symmetric mode by using the
49th order expansions (seven radial and seven vertical
functions) based on the increment of total number of
terms by 68. For the asymmetric mode, 72 terms were
needed and nine radial with eight vertical terms gave
the best results.

4.2. Critical Rayleigh numbers for |Sp| = 100

In order to illustrate the case with internal heat
source of finite intensity, we chose the case Sp = 100
and Sp = —100 corresponding to the positive and
negative temperature difference between the two hori-
zontal surfaces confining the domain. The critical Ray-
leigh numbers for some selected aspect ratios with
|Sp| = 100 are listed in Table 3. It is well known that
for small aspect ratios, the critical mode is asymmetric
in the heated-from-below case. Our results show that it
remains true when there is an internal heat source with
|Sp| = 100. The asymmetric mode n = 1 predominate
when the aspect ratios A is inferior to about 0.75. For

a large aspect ratio the difference of Ra. between sym-
metric and asymmetric mode is reduced. The variation
of Ra. with aspect ratio 4 (between 1 and 4) for sym-
metric mode (n = 0) with |Sp| = 100 is presented in
Fig. 2.

4.3. Velocity fields at the onset of convection

The system of perturbation equations and boundary
conditions is invariant under the transformation (Sp,
z)—(—Sp, —z). The degree of this symmetry is strong
when |Sp| is large and the symmetry is exact for
|Sp|— oo regardless of the aspect ratio. When Sp = 0
the system is symmetric with respect to z =0 itself.

235 =

Insulating sides

\ — - — Conducting sides

225

215

205

IRacl

195

185

175 . ! . ! ' | . ! . | ' | '
0.5 1 1.5 2 2.5 3 35 4

Fig. 2. The critical Rayleigh numbers for symmetric mode,
[Spl =100, 1 < 4 < 4.
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Table 3

Critical Rayleigh number for some aspect ratios and for different modes, at Sp = 0, 100, —100

Sp A Mode n Insulating sidewalls Conducting sidewalls
0 4.0 0 1748.70 1749.53
1 1733.95
2 1747.92
3 1741.66
100 4.0 0 179.29 179.38
1 178.75
2 179.17
3 178.96
1.5 0 195.68 196.28
1 186.88 191.88
2 193.86 196.58
3 205.64 206.22
0.5 0 480.77 531.01
1 281.25 440.39
2 441.97
3 771.16
0.25 0 3161.13 3384.86
1 830.49 1879.82
2 2480.52 4527.92
3 5672.62
—100 4.0 0 —199.21 —199.46
1 —198.95
2 —199.05
3 —199.27
1.5 0 —215.78 —217.20
1 —208.23 —213.08
2 —213.46 —216.96
3 —226.58 —226.56
0.5 0 —509.11 —562.73
1 —308.33 —473.45
2 —471.17
3 —812.44
0.25 0 —3282.02 —3517.33
1 —875.83 —1969.51
2 —2583.08 —4702.50
3 —5878.00

The variations of the flow patterns depending not only
on the aspect ratio but also on the Sparrow number is
rather complex. We present here only some representa-
tive cases. The sidewalls are all adiabatic for all the
flow fields presented below.

For a given aspect ratio 4>1, the number of axi-
symmetric rolls increases as Sp increases. An example
of A = 3.6 is illustrated in Fig. 3 showing the charac-
teristics of the increase of the wave number with
increasing Sp. This is in agreement with the results of
an infinite horizontal fluid layer [6] in which the wave
length is 1.28 times larger for Sp = 0 than that for
Sp = oo.

For |Sp| =100, a new circular roll occurs at the
upper corner for 67 > 0 or the lower corner for 07 <
0 when the aspect ratio exceeds a value near the max-

ima of the insulating neutral curves in Fig. 2. The
boundary of the new circular roll extends as the aspect
ratio increases further. The roll having less velocity
intensity can grow to a size roughly equal to its paral-
lel counter-rotating roll when the aspect ratio nears a
value corresponding to the minima of the neutral
curves in Fig. 2. An example of the transition sequence
from one to two rolls is shown in Fig. 4.

5. Conclusion

This study gives a linear stability analysis of a fluid
in a bounded vertical cylinder with internal heat gener-
ation.

In each section, we have given partial conclusions
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Fig. 3. The evolution of the velocity vectors as a function of Sp for a given aspect ratio 4
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and results on the stability conditions for the sym-
metric and asymmetric modes depending on the aspect
ratio and the internal heat generation.

In the limiting classical case without internal source,
our results are compared with those in the literature,
for all aspect ratios and different modes. For the sym-
metric mode with internal source, the comparison is
done with a direct simulation we did in a previous
paper. All these results are in good agreement.

The main points of the conclusion concerning the
present study are that: the symmetry relative to the
medium horizontal plane is broken, the Rayleigh num-
ber is not the only relevant parameter and, as in the
classical case without source, the first asymmetric
mode is the most unstable for small aspect ratios.

In the case without internal source, the heat can be
transferred from the top to the bottom or vice versa
depending on 7. In the case with internal heat source,
the energy coming from the interior is transferred to
the top and to the bottom. The conductive tempera-

8T>0 8T<0

A=1.2 Sp=100 A=1.2 Sp=-100

©

A=134 Sp=-100

A=1.48 Sp=-100
7

0o

A=195 Sp=-100

Tl

° °
&

o

° &

05

o
°

1

05 - ] 05

Fig. 4. Transition sequence from one to two rolls, insulating
sidewall, |Sp| = 100.

ture distribution can have a region where the gradient
is directed toward the bottom. So, the equilibrium
becomes potentially unstable. If the top is hotter than
the bottom and as the unstable domain is near the top,
the effects of convection are to evacuate more energy
toward the top (it is possible to obtain 70% of heat
[20]). From the point of view of the dimensional analy-
sis the two parameters that intervene when the two
types of heat transfer are competitive, are the Rayleigh
number Ra and the dimensionless number Sp which
we call the Sparrow number.

The confinement has a stabilizing effect, but it is the
asymmetric mode n =1 that becomes more unstable
than the axisymmetric mode for small aspect ratios. If
the lateral wall is conductive, the stabilizing effect of
the sidewall is weaker since the heat can be transferred
laterally. On the contrary, in the adiabatic case, the
heat cannot be evacuated toward the sidewalls. This
creates a more favorable condition for the instability.
In these two cases, the effect of the confinement is of
little importance for the aspect ratio 4 superior to or
of the order of 4.
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